57 research outputs found

    Analogue CMOS Cochlea Systems: A Historic Retrospective

    Get PDF

    Charge-based supercapacitor storage estimation for indoor sub-mW photovoltaic energy harvesting powered wireless sensor nodes

    Get PDF
    Supercapacitors offer an attractive energy storage solution for lifetime “fit and forget” photovoltaic (PV) energy harvesting powered wireless sensor nodes for internet of things (IoT) applications. Whilst their low storage capacity is not an issue for sub-mW PV applications, energy loss in the charge redistribution process is a concern. Currently there is no effective method to estimate the storage of the supercapacitor in IoT applications for optimal performance with sub-mW input. The existing energy-based method requires supercapacitor model parameters to be obtained and the initial charge state to be determined, consequently it is not suitable for practical applications. This paper defines a charge-based method, which can directly evaluate supercapacitor’s storage with straightforward calculations. Time constant analysis and experimental tests demonstrate that with the newly proposed method the manufacturer-specified tiny leakage current, although measured long after post-charge (e.g. 72 hours), can be directly used, making the storage estimation for a supercapacitor in IoT applications as simple as that for an ordinary capacitor. In addition, the demonstrated tiny leakage current at the required energy storage for a sub-mW PV powered IoT application enables a supercapacitor alone to be employed as the storage mechanism, thus achieving lifetime battery-replacementfree, self-powered IoT nodes

    Front-End Receiver Architecture for Miniaturised Ultrasound Imaging

    Get PDF
    Abstract -The design and measured results for an I/Q synthetic aperture beamforming front-end are presented. The system targets a highly portable ultrasound imaging applications such as wearable/portable devices and capsule endoscopes. Synthetic aperture beamforming is carried out in the baseband in order to minimise the bandwidth and power consumption. A single-channel analogue front-end (AFE) demodulates RF signals into I/Q components. The FPGA-based beamformer dynamically apodises and focuses the data by interpolating and applying complex phase rotations to the I/Q samples. The entire system is pipelined using a synthetic aperture protocol through a single, multiplexed channel in order to reduce the cost and complexity of the system and minimise the area. The AFE consumes 7.8mW and occupies 1.5 mm × 1.5 mm in AMS 0.35µm CMOS. The digital beamformer is implemented on a Kintex-7 TM FPGA and consumes 262mW for a frame rate of 4Hz. Measured results using real ultrasound data reveal that comparable image quality may be attained to the case when full RF beamforming is used. Future work includes integration of analogue/digital components on a single chip

    Clinical value of bioelectrical properties of cancerous tissue in advanced epithelial ovarian cancer patients

    Get PDF
    Currently, there are no valid pre-operatively established biomarkers or algorithms that can accurately predict surgical and clinical outcome for patients with advanced epithelial ovarian cancer (EOC). In this study, we suggest that profiling of tumour parameters such as bioelectrical-potential and metabolites, detectable by electronic sensors, could facilitate the future development of devices to better monitor disease and predict surgical and treatment outcomes. Biopotential was recorded, using a potentiometric measurement system, in ex vivo paired non-cancerous and cancerous omental tissues from advanced stage EOC (n = 36), and lysates collected for metabolite measurement by microdialysis. Consistently different biopotential values were detected in cancerous tissue versus non-cancerous tissue across all cases (p < 0.001). High tumour biopotential levels correlated with advanced tumour stage (p = 0.048) and tumour load, and negatively correlated with stroma. Within our EOC cohort and specifically the high-grade serous subtype, low biopotential levels associated with poorer progression-free survival (p = 0.0179, p = 0.0143 respectively). Changes in biopotential levels significantly correlated with common apoptosis related pathways. Lactate and glucose levels measured in paired tissues showed significantly higher lactate/glucose ratio in tissues with low biopotential (p < 0.01, n = 12). Our study proposes the feasibility of biopotential and metabolite monitoring as a biomarker modality profiling EOC to predict surgical and clinical outcomes

    Passive impedance sensing using a SAW resonator-coupled biosensor for zero-power wearable applications

    Get PDF
    A bio-sensing scheme, which acquires impedance information of a capacitive biosensor by using the reflected RF signal from a surface acoustic wave (SAW) resonator connected to the biosensor, is proposed. This technique requires no power to be supplied to the biosensor node and hence is highly applicable to wearable applications. Theoretical analysis has demonstrated that the sensitivity of the SAW resonator-coupled biosensor is higher than that of traditional impedance loaded SAW sensors and therefore it is more suitable for measuring the very small impedance changes in biosensors. The passive detection of the change in the impedance of a capacitive biosensor, as a result of biological binding events associated with the capture of a target analyte, has been demonstrated by preliminary experimentation. Dry tests of the SAW coupled capacitive biosensor using a cable connected network analyzer showed the aF level capacitance measurement resolution, which was only achieved in transistor level circuits previously, could be attained. When liquid samples with concentrations of C-Reactive Protein (CRP) in the range of 0.1 to 2 &#x03BC;g/ml were applied to the biosensor, a corresponding change in the resonant frequency of the SAW resonator-coupled biosensor (in the order of sub-hundred kHz) was observed. This has demonstrated the potential for applying this technique in applications where a zero-power requirement at the biosensor node could be a distinct advantage, when the cable link between the network analyzer and the biosensor node is replaced by the RF transmission
    • …
    corecore